Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023
Question Paper Log Number P72906A
Publications Code WST03_01_MS_2301
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation. e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.
The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.
For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity - this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. - follow through - marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only’ (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question	Scheme			Marks
1 (a)(i)	Method 1		Method 2	
	$[\bar{y}=] \frac{847}{100}[=8.47]$		$847+100 \times 1000$ [=100847]	M1
	So $\bar{x}=1000+\frac{847}{100}=1008.47$ *		$\bar{x}=\frac{847+1000 \times 100}{100}=1008.47 *$	A1*
(ii)	$\left[s_{x}^{2}=s_{y}{ }^{2}=\right] \frac{13510.09-100 \times 18.47^{" 2}}{99}$		$\left[s_{x}{ }^{2}=\right] \frac{101707510.1-\frac{" 100847^{\prime 2}}{100}}{99}$	M1
	$=64$			A1
				(4)
(b)	$\mathrm{H}_{0}: \mu_{x}=1010 \quad \mathrm{H}_{1}: \mu_{x} \neq 1010$			B1
				(1)
(c)	$\frac{\bar{X}-1010}{" 8 " / \sqrt{100}}=-1.96 \text { oe } \quad \frac{\bar{X}-1010}{" 8 " / \sqrt{100}}=1.96 \text { oe }$			M1 B1
	$\bar{X}=1008.432 \quad \bar{X}=1011.568 \quad$ awrt 1008 and 1012(or 1011)			A1
	\bar{X}, "1008.432" \bar{X}..."1011.568"			A1ft
				(4)
(d)	1008.47 is not in the critical region			M1
	The machine does not need to be stopped/reset			A1ft
				(2)
(e)	It is reasonable since the sample size is (reasonably) large			B1
				(1)
	Notes			Total 12
(a)(i)	M1 \quad For 8.47 or $847 / 100$ or $847+100 \times 1000$ or $847=\sum x-100 \times 1000$ or 100847 seen			
	A1*	cso correct solution including $\bar{x}=\ldots$ and $\ldots=1008.47$ allow alt notation for \bar{x} but must refer to x not y and must not be just $x \operatorname{eg} \mathrm{E}(X), \mu_{x}$, mean of x		
(ii)	M1	For a correct expression ft their 100847 Allow for answer of 1064		
	A1	Cao do not ISW Allow 64.00...		
(b)	B1	Both hypotheses correct. Must be in terms of μ. (Allow $\mathrm{H}_{0}: \mu_{y}=10 \mathrm{H}_{1}: \mu_{y} \neq 10$)		
	Mark (c) and (d) together			
(c)	M1	For \pm standardisation with 1010 and their sd Allow equivalent eg $0010 \pm n \times 8 " / \sqrt{100}$ SC condone use of 1008.47 for 1010 or for \bar{X}		
	B1	For c.v. $= \pm 1.96$ or better seen (Calculator gives $1.95996 \ldots$) Condone 1.6449 or better if they have a one tail hypotheses in (b)		
	A1	For both limits 1008 or better and 1012 or better seen. (condone 1011 from correct working)		
	A1	For selecting the correct region ft their figures(not z value). Allow use of < and > also allow other letters(condone μ) Allow other notation eg [1012, ∞], $(\infty, 1008]$ allow [1012, ∞], $[\infty, 1008]$		
(d)	M1	ft their CR if the final A mark in part (c) is awarded. For a correct comment compatible with their CR. Must refer to 1008.47 (allow mean of x) is in or out of their CR Allow writing in the form " 1008.432 " > 1008.47 > " 1011.568 " etc but if in middle it must have both ends. If no clear CR it is M0A0		
	A1ft	dep on M1 awarded. Correct conclusion consistent with comparing 1008.47 with their CR(allow interval/range etc). If it is in the CR they must say it needs to be reset/stopped. If it is not in the CR it must say it does not need to be stopped/reset. (allow equivalent wording)		

	SC	If the CR in (c) is of the form "1008.432" < $\bar{X}<" 1011.568 "$ oe (not z values) then award M0A1 for concluding the machine does not need to be stopped/reset.
(e)	B1	Any suitable comment about the sample being large eg n is large

| | M1 must be awarded. A correct conclusion for their value of r from (c) Conclusion must refer to
 A1ft
 positive correlation, seasonal best or time and finishing time. Do not allow contradicting comments.
 if the \|test value| or $\|\mathrm{CV}\|>1$ then it is M0 |
| :--- | :--- |

Full calculations for(b)
eg $\frac{(24-14.33)^{2}}{14.33}+\frac{(176-185.67)^{2}}{185.67}+\frac{(48-50.17)^{2}}{50.17}+\frac{(652-649.83)^{2}}{649.83}+\frac{(14-" 21.5 ")^{2}}{21.5}+\frac{\left.(286-" 278.5)^{2}\right)^{2}}{278.5}$
or awrt $6.52+$ awrt $0.5+$ awrt $0.09+$ awrt $0.01+$ awrt $2.62+0.20$
or $\frac{24^{2}}{14.33}+\frac{176^{2}}{185.67}+\frac{48^{2}}{50.17}+\frac{652^{2}}{649.83}+\frac{14^{2}}{" 21.50 "}+\frac{286^{2}}{" 278.5^{\prime \prime}}-1200$
or awrt $40.19+$ awrt $166.83+$ awrt $45.92+$ awrt $654.17+$ awrt $9.116+$ awrt $293.702-1200$

$\frac{\text { Question }}{4 \text { (a) }}$		Scheme	Marks
		$\mathrm{H}_{0}: \mathrm{B}(4,0.5)$ is a suitable model $H_{1}: B(4,0.5)$ is not a suitable model	B1
		Expected frequencies 12.5, 50, $75,50,12.5$	M1 A1
		$\begin{aligned} & \sum \frac{(O-E)^{2}}{E}=\frac{(15-" 12.5 ")^{2}}{" 12.5 "}+\ldots+\frac{(10-" 12.5 ")^{2}}{" 12.5 "} \\ & \text { or } \sum \frac{O^{2}}{E}-N=\frac{15^{2}}{" 12.5 "}+\ldots+\frac{10^{2}}{" 12.5 "}-200 \end{aligned}$	M1
		$=10.84$ (or 10.8)	A1
		$v=4$	B1
		$\chi_{4}{ }^{2}(0.05)=9.488 \quad \Rightarrow$ CR $\ldots 9.488$	B1
		Sufficient evidence to say that the research students claim is not supported	A1ft
			(8)
(b)		[$0 \times 15+] 1 \times 68+2 \times 69+3 \times 38+4 \times 10[=360]$	M1
		$\frac{360}{200 \times 4}=0.45$ *	A1*
			(2)
(c)		H_{0} : Binomial is a suitable model H_{1} : Binomial is not a suitable model	B1
		$v=3$	B1
		$\chi_{3}{ }^{2}(0.05)=7.815 \Rightarrow \mathrm{CR} \ldots 7.815$	B1ft
		No significant evidence to say that the binomial is not a reasonable model	B1ft
			(4)
		Notes	Total 14
(a)	B1	Both hypotheses correct. Must mention $\mathrm{B}(4,0.5)$ at least once. (may be in words need Binomial, probability $(p)=0.5$ and a reference to 4 children or $n=4)$ Condone $\mathrm{B}(0.5,4)$	
	M1	For a correct method to find at least one expected frequency e.g. $0.5^{4} \times 200[=12.5]$ or $4 \times 0.5^{4} \times 200[=50]$ or $6 \times 0.5^{4} \times 200[=75]$ May be implied by correct answer 10.84 or 10.8	
	A1	For all 5 expected frequencies correct. These must be seen and cannot be implied.	
	M1	For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if needed) $\sum \frac{(O-E)^{2}}{E}=0.5+6.48+0.48+2.88+0.5 \text { or } \sum \frac{O^{2}}{E}-N=18+92.48+63.48+28.88+8-200$ May be implied by correct answer 10.84 or 10.8	
	A1	10.84 Allow 10.8	
	B1	$v=4$ This mark can be implied by a correct critical value of 9.488	
	B1	$9.488 \mathrm{ft} \mathrm{their} \mathrm{degrees} \mathrm{of} \mathrm{freedom} \mathrm{if} \mathrm{given} \mathrm{For} v=$.3 it is 7.815	
	A1ft	Dep on the $2^{\text {nd }} \mathrm{M} 1$. independent of hypotheses. Need claim or student or binomial. ft their CV and their test statistic only. A correct conclusion based on their test statistic value and their χ^{2} critical value (Allow in terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV then must say not supported (not binomial) . If their Test statistic < their CV then must say supported (is binomial)	
(b)	M1	A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0$]+68+138+114+40$. Implied by 360 or 1.8	
	A1*	cso allow for $360 / 800$ or $1.8 / 4$ or $1.8=4 p$	
(c)	B1	Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/B(0.45,4)	
	B1	$v=3$ This mark can be implied by a correct critical value of 7.815 Condone (their v in part(a) - 1)	
	B1ft	7.815 ft their degrees of freedom if they have (their v in part(a) - 1)	
	B1ft	Ft their CV only. Independent of hypotheses. A correct conclusion based on awrt 2.47 and their χ^{2} critical value only. Ignore any parameter given. Do not allow contradicting statements.	

Question	Scheme			Marks	
7 (a)	Let $P=$ time to serve a customer at a standard checkout				
	$Q=P_{1}+P_{2}+P_{3} \quad[Q \sim] \mathbf{N}(720,1200)$			B1	
	$\mathrm{P}(Q<660)=\mathrm{P}\left(Z< \pm \frac{660-720 "}{" \sqrt{1200} "}\right)[=\mathrm{P}(Z<-1.732 \ldots)]$			M1	
	$=0.04$	(Calculator gives 0.04163...)	awrt $0.041 / 0.042$	A1	
				(3)	
ALT	for the B1 M1				
	B1 fo M1 f	$\begin{aligned} & {[Q \sim] \mathrm{N}\left(12, \frac{1}{3}\right)} \\ & \mathrm{P}(Q<11)=\mathrm{P}\left(Z< \pm \frac{11-" 12 "}{\sqrt{" 1 / 3 "}}\right)[=\mathrm{P}(Z<-1.732 \ldots)] \end{aligned}$			
(b)	Assume the time taken to serve customers is independent			B1	
				(1)	
(c)	$R=$ time to serve a customer at an express checkout				
	$S=\left(P_{1}+P_{2}+P_{3}\right)-\left(R_{1}+\ldots+R_{7}\right) \quad[S \sim] \mathbf{N}(\mathbf{2 0 , 1 6 4 8})$			M1 A1	
	$\mathrm{P}(S>0)=P\left(Z> \pm \frac{0-20}{\\| \sqrt{1648} "}\right)[=P(Z>-0.492 \ldots)]$			M1	
	$=0.6$	(Calculator gives 0.6888...)	awrt 0.688 / 0.689	A1	
ALT	For the M1A1M1$\begin{aligned} & \text { M1 for } \mathrm{N}\left(\frac{1}{3}, \ldots\right) \\ & \text { A1 for } \mathrm{N}\left(\frac{1}{3}, \frac{103}{225}\right) \end{aligned}$				
	$\text { M1 for } \pm \frac{0-1 / 3}{\sqrt{103 / 225 "}}$				
				(4)	
	Notes			Total 8	
(a)	B1	For $\mathrm{N}(720,1200)$ or $\mathrm{N}\left(12, \frac{1}{3}\right)$ Maybe awarded if used in standardisation			
	M1	For standardising using 660 , their mean $\neq 240$ or 4 and their standard deviation $\neq 20$ or $\frac{1}{3}$. If no distribution given the mean and sd must be correct in the standardisation. Allow \pm stand			
	A1	awrt 0.041 or awrt 0.042			
(b)	B1	A correct assumption. Must have context of customers or time and independence(allow random)			
(c)	M1	For $\mathrm{N}\left(\pm 20, \ldots\right.$) or $\mathrm{N}\left(\frac{1}{3}, \ldots\right)$ maybe awarded in standardisation			
	A1	For $\mathrm{N}(\pm 20,1648)$ or $\mathrm{N}\left(\frac{1}{3}, \frac{103}{225}\right)$ maybe awarded if used in standardisation			
	M1	For standardising using 0 and mean of ± 20 or $\pm 1 / 3$ and their standard deviation. The 0 may be implied by having just the mean on the numerator Allow \pm stand			
	A1	awrt 0.688 to 0.689			

